Answer:
(a) The magnetic energy density in the field is 6.366 J/m³
(b) The energy stored in the magnetic field within the solenoid is 5 kJ
Explanation:
magnitude of magnetic field inside solenoid, B = 4 T
inner diameter of solenoid, d = 6.2 cm
inner radius of the solenoid, r = 3.1 cm = 0.031 m
length of solenoid, L = 26 cm = 0.26 m
(a) The magnetic energy density in the field is given by;
(b) The energy stored in the magnetic field within the solenoid
Answer:
= 2630.6 N.m
Explanation:
(FR)x = ΣFx = -F4 = -407 N
(FR)y = ΣFy =-F1-F2 -F3 = -510 - 306 - 501 = -1317 N
(MR)B =ΣM + Σ(±Fd)
= MA + F1(d1 +d2) + F2d2 - F4d3
= 1504 + 510(0.880+1.11) +306(1.11) - 407(0.560)
= 2630.64 N.m (counterclockwise)
Answer:
there are 7 significant figures
Explanation:
15.33879+15.555
=30.89379
there are 7 significant figures
mark me as brainliest plyyzzz
There's no such thing as "an unbalanced force".
If all of the forces acting on an object all add up to zero, then we say that
<span>the group </span>of forces is balanced. When that happens, the group of forces
has the same effect on the object as if there were no forces on it at all.
An example:
Two people with exactly equal strength are having a tug-of-war. They pull
with equal force in opposite directions. Each person is sweating and straining,
grunting and groaning, and exerting tremendous force. But their forces add up
to zero, and the rope goes nowhere. The <u>group</u> of forces on the rope is balanced.
On the other hand, if one of the offensive linemen is pulling on one end of
the rope, and one of the cheerleaders is pulling on the other end, then their
forces don't add up to zero, because even though they're opposite, they're
not equal. The <u>group</u> of forces is <u>unbalanced</u>, and the rope moves.
A group of forces is either balanced or unbalanced. A single force isn't.
Answer:
<em>The volume of water is 3.5 cubic meter</em>
Explanation:
<u>Density
</u>
The density of a substance or material is the mass per unit volume. The density varies with temperature and pressure.
The formula to calculate the density of a substance of mass (m) and volume (V) is:
We are given the density of water as .It's required to find the volume of m=3,500 kg of water. Solving for V:
The volume of water is 3.5 cubic meter