Helium is a chemical ELEMENT of the family of noble gases. Its chemical symbol is 'He' which has an atomic number of 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas, the first in the noble gas group in the periodic table. Although it doesn't really react under normal conditions, it is the second most abundant element in the universe.
Elements are pure substances that cannot be broken down any further.
Neo-pentane represents the Compound A while compound B is n-pentane.
After careful consideration we can say that compounds A and B are alkanes and also isomers of pentane. In chemistry, Isomers are defined as compounds having same empirical molecular formula but different structural formulas due to varying arrangement of atoms.
Now, as per the question statement, compound A gives a single monochlorination product upon heating with the molecule of chlorine i.e. Cl2 showing that the molecule is extremely symmetric. This molecule must be neo-pentane. Refer to image 1.
Similarly, Compound B forms 3 constitutional isomers after undergoing monochlorination. This compound must be n-pentane since three are 3 different types of carbon atoms in the structure. Refer to image 2.
If you need to learn more about neo-pentane click here:
brainly.com/question/20815247
#SPJ4
I would say that it's C. Seasonal temperatures have dipped over time, but I could easily be wrong, since it's my opinion. A weather condition is defined as the atmospheric conditions that 'comprise the state of the atmosphere in terms of temperature and wind and clouds and precipitation. But I believe it could just as easily be B. 150mm of rainfall is a normal average in the city.
Answer:
V₂ = 530.5 mL
Explanation:
Given data:
Initial temperature = 20.0°C
Final temperature = 40.0 °C
Final volume = 585 mL
Initial volume = ?
Solution:
Initial temperature = 20.0°C (20+273 = 293 K)
Final temperature = 40.0 °C (40+273 = 323 K)
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₂ = 585 mL × 293 K / 323 K
V₂ = 171405 mL.K / 323 K
V₂ = 530.5 mL