Answer:
Metallic Bonding
Explanation:
Metallic Bonding
In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize. That is to say, instead of orbiting their respective metal atoms, they form a “sea” of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions.
The atomic number of germanium is 32 i.e. 32 protons. The number of protons in the nucleus of atom is called atomic number. Germanium has 32 electrons ( 2 electrons in first orbit, 8 electrons in second orbit, 18 electrons in third orbit and 4 electrons in the outermost orbit.
According to the task, you are proveded with patial pressure of CO2 and graphite, and here is complete solution for the task :
At first you have to find n1 =moles of CO2 and n2 which are moles of C
<span>The you go :
</span>
n1 n2 0
-x -x +2x
After that you have to use the formula
Then you have to solve x, and for that you have to use <span>RT/V
And to find total values:</span>
I am absolutely sure that this would be helpful for you.
Answer:
Mixtures
Explanation:
Matter can be classified as a compound and a mixture.
Answer: On heating, Magnesium forms its oxide; while potassium manganate(VII) decomposes
Explanation:
Magnesium Mg, on heating forms Magnesium oxide
2Mg(s) + O2(g) --> 2MgO
Potassium permanganate KMnO4, on heating decomposes to potassium manganate K2MnO4, manganese dioxide MnO2, and Oxygen gas O2.
2KMnO4 --> K2MnO4 + MnO2 + O2
The difference in observation is that, on heating, Magnesium forms its OXIDE as product; while potassium manganate(VII) decomposes, giving OFF most of its constituents and reducing its weight.