Work is (force) times (distance). For Amy, you know both of them, and you can easily multiply them to find the amount of work. For Joe, the distance is zero, which should tell you all you need to know.
Answer:
From the second law of motion:
F = ma
we are given that the force applied on the block is 20N and the block accelerates at an acceleration of 4 m/s/s
So, F= 20N and a = 4 m/s/s
Replacing the variables in the equation:
20 = 4* m
m = 20 / 4
m = 5 kg
Answer:
The force will have to increase
Explanation:
Since Juan has upgraded from a sports car to a large truck, based on Newton's second law of motion, the force needed to keep the truck going at the same speed will have to increase.
According to Newton's second law "the force on an object is equal to the product of its mass and acceleration".
Force = mass x acceleration
A truck has a larger mass compared to a sports car.
By virtue of this, to make sure both automobiles attain the same speed, the force powering them to accelerate must be the same.
Therefore, the force from the engine must increase.
Answer:
(a) k = 30.33 N/m
(b) a = 9.8 m/s²
Explanation:
First, we need to find the force acting on the bungee jumper. Since, this is a free fall motion. Therefore, the force must be equal to the weight of jumper:
F = W = mg
F = (65 kg)(9.8 m/s²)
F = 637 N
(a)
Now applying Hooke's Law:
F = k Δx
where,
k = spring constant = ?
Δx = change in length of bungee cord = 33 m - 12 m = 21 m
Therefore,
637 N = k(21 m)
k = 637 N/21 m
<u>k = 30.33 N/m</u>
<u></u>
(b)
Since, this is free fall motion. Thus, the maximum acceleration will be the acceleration due to gravity.
a = g
<u>a = 9.8 m/s²</u>