Answer:
False
Explanation:
Let's consider the definition of the angular momentum,
where is the moment of inertia for a rigid body. Now, this moment of inertia could change if we change the axis of rotation, because "r" is defined as the distance between the puntual mass and the nearest point on the axis of rotation, but still it's going to have some value. On the other hand,
so unless ║ .
In conclusion, a rigid body could rotate about certain axis, generating an angular momentum, but if you choose another axis, there could be some parts of the rigid body rotating around the new axis, especially if there is a projection of the old axis in the new one.
Complete Question
A parallel plate capacitor creates a uniform electric field of 5 x 10^4 N/C and its plates are separated by 2 x 10^{-3}'m. A proton is placed at rest next to the positive plate and then released and moves toward the negative plate. When the proton arrives at the negative plate, what is its speed?
Answer:
Explanation:
From the question we are told that:
Electric field
Distance
At negative plate
Generally the equation for Velocity is mathematically given by
Therefore
Answer:
Explanation:
Speed = distance / time
Velocity = displacement / time
So ,
Speed = 50 km / 0.5 hr = 100 km/h
Velocity = 40 km / 0.5hr = 80 km/h
Answer:
2.7
Explanation:
The following data were obtained from the question:
Mass (m) of box = 100 Kg
Length (L) of ramp = 4 m
Height (H) of ramp = 1.5 m
Mechanical advantage (MA) of ramp =?
Mechanical advantage of a ramp is simply defined as the ratio of the length of the ramp to the height of the ramp. Mathematically, it is given by:
Mechanical Advantage = Lenght / height
MA= L/H
With the above formula, we can obtain the mechanical advantage of the ramp as follow:
Length (L) of ramp = 4 m
Height (H) of ramp = 1.5 m
Mechanical advantage (MA) of ramp =?
MA = 4/1.5
MA = 2.7
Therefore, the mechanical advantage of the ramp is 2.7
Acceleration = force / mass = 20 / 2 = 10 m/s^2