Conjugate base of Propanoic acid ( is propanoate where -COOH group gets converted to -CO. The structure of conjugate base of Propanoic acid is shown in the diagram.
The above which 90% of the compound will be in this conjugate base form can be determined using Henderson's equation as propanoic acid is weak acid and it can form buffer solution on reaction with strong base.
= + log=4.9+log=5.85
As 90% conjugate base is present, so propanoic acid present 10%.
It showed that the nucleus is positively charged, and that the atom isn't just made of electrons.
Answer: The standard state refers to 1 atm and .
Explanation:
It is known that a chemical/substance can either be present in a solid, liquid or gaseous state.
So, when the phase of a substance like solid, liquid or gas is present at 1 atmosphere pressure and at a temperature of then it known as standard state of substance.
Thus, we can conclude that standard state refers to 1 atm and .
Answer:
48.67 seconds
Explanation:
From;
1/[A] = kt + 1/[A]o
[A] = concentration at time t
t= time taken
k= rate constant
[A]o = initial concentration
Since [A] =[A]o - 0.75[A]o
[A] = 0.056 M - 0.042 M
[A] = 0.014 M
1/0.014 = (1.1t) + 1/0.056
71.4 - 17.86 = 1.1t
53.54 = 1.1t
t= 53.54/1.1
t= 48.67 seconds
Hence,it takes 48.67 seconds to decompose.
Answer:
A mixture of 100. mL of 0.1 M HC3H5O3 and 50. mL of NaOH
Explanation:
The pH of a buffer solution is calculated using following relation
Thus the pH of buffer solution will be near to the pKa of the acid used in making the buffer solution.
The pKa value of HC₃H₅O₃ acid is more closer to required pH = 4 than CH₃NH₃⁺ acid.
pKa = -log [Ka]
For HC₃H₅O₃
pKa = 3.1
For CH₃NH₃⁺
pKa = 10.64
pKb = 14-10.64 = 3.36 [Thus the pKb of this acid is also near to required pH value)
A mixture of 100. mL of 0.1 M HC3H5O3 and 50. mL of NaOH
Half of the acid will get neutralized by the given base and thus will result in equal concentration of both the weak acid and the salt making the pH just equal to the pKa value.