Answer:
Explanation:
Hello,
In this case, for latent heat (phase change) we need to consider the enthalpy associated with the involved process, here, melting or fusion; thus, the enthalpy of fusion of copper is 13.2 kJ/mol, therefore, the heat is computed as:
Nevertheless, since the given enthalpy is per mole of copper, we need to use its atomic mass to perform the correct calculation as follows:
Which is positive as it needs to be supplied to the system.
Best regards.
The reaction will be: FeBr2 + K --> KBr + Fe
Balancing gives: FeBr2 + 2K --> 2KBr + Fe
The molar mass of FeBr2 is 55.85 + 2*79.9 = 215.65 g/mol.
We divide 40 g / 215.65 g/mol = 0.185 mol FeBr2
Based on stoichiometry:
(0.185 mol FeBr2)(2 mol KBr/1 mol FeBr2) = 0.370 mol KBr
Wikipedia
Blogs from random people