<u>Answer:</u> The percent composition by mass of hydrogen in given compound is 6.33 %
<u>Explanation:</u>
We are given:
A chemical compound having chemical formula of
It is made up by the combination of 1 nitrogen atom, 5 hydrogen atoms, 1 carbon atom and 3 oxygen atoms
To calculate the percentage composition by mass of hydrogen in the compound, we use the equation:
Mass of compound =
Mass of hydrogen =
Putting values in above equation, we get:
Hence, the percent composition by mass of hydrogen in given compound is 6.33 %
Methane gas and chlorine gas react to form hydrogen chloride gas and carbon tetrachloride gas. What volume of hydrogen chloride would be produced by this reaction if 3.16 L of chlorine were consumed at STP.
Be sure your answer has the correct number of significant digits.
Answer: Thus volume of carbon tetrachloride that would be produced is 0.788 L
Explanation:
According to ideal gas equation:
P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 3.16 L
n = number of moles = ?
R = gas constant =
T =temperature =
According to stoichiometry:
4 moles of chlorine produces = 1 mole of carbon tetrachloride
Thus 0.141 moles of methane produces = moles of carbon tetrachloride
volume of carbon tetrachloride =
Thus volume of carbon tetrachloride that would be produced is 0.788 L
Answer:
c = 0.898 J/g.°C
Explanation:
1) Given data:
Mass of water = 23.0 g
Initial temperature = 25.4°C
Final temperature = 42.8° C
Heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Specific heat capacity of water is 4.18 J/g°C
ΔT = 42.8°C - 25.4°C
ΔT = 17.4°C
Q = 23.0 g × × 4.18 J/g°C × 17.4°C
Q = 1672.84 j
2) Given data:
Mass of metal = 120.7 g
Initial temperature = 90.5°C
Final temperature = 25.7 ° C
Heat released = 7020 J
Specific heat capacity of metal = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 25.7°C - 90.5°C
ΔT = -64.8°C
7020 J = 120.7 g × c × -64.8°C
7020 J = -7821.36 g.°C × c
c = 7020 J / -7821.36 g.°C
c = 0.898 J/g.°C
Negative sign shows heat is released.
Answer:
2.78 x 10²³
Explanation:
1 mole contains 6.02 x 10²³ hydrogen atoms => 0.46 mole contains 0.46(6.02 x 10²³) hydrogen atoms or 2.78 x 10²³ atoms.
Caution => When to use H vs H₂ => This problem is specific for 'hydrogen atoms' but some may simply say hydrogen. In such cases use H₂ or 'molecular hydrogen' is the focus. it's a matter of semantics, H vs H₂.
<u><em>In metallic bonding, the valence electrons are free to move throughout the metal structure. Metallic bonding is the electrostatic attraction between the metal atoms or ions and the delocalized electrons. This is why atoms or layers are allowed to slide past each other, resulting in the characteristic properties of malleability and ductility.</em></u>