The Case of the Missing Mass: Students have completed the experiment of combining vinegar and baking soda. They notice that thei
r beginning mass in the video does not match the ending one. Use the equation(below) and the Law of Conservation of Mass to explain why the students have NOT destroyed atoms in their experiment. This is the chemical equation for the experiment:
They notice that their beginning mass in the video does not match ... Use the equation(below) and the Law of Conservation of ... This is the chemical equation for the experiment:.
Demand for gasoline in Orlando is price inelastic.
Explanation:
The elasticity is the degree of response to a change in price or quantity supplied to the the quantity demanded. An elastic demand responds positively to change in price, while an inelastic demand means that when there is a price increase, the quantity demanded remains the same and where there is a drop in price the quantity demanded remains constant.
If a small change in price results in a large change in demand then the good is said to be price elastic
In the question the price increases by 10% while the quantity demanded drops 5 % daily. Therefore it is price inelastic
<em>Differences- </em>A polymer is a collection of a large number of molecules whereas a monomer is a single molecule.
A monomer is a single molecule, which has the ability to chemically bond with other monomers in a long chain. A polymer is a chain that is made when monomers bind with other monomers.
<em>Similarities-</em> They are both molecules
<u><em>Properties:</em></u>
<em> Differences- </em>Monomers have polyfunctionality, which is the capacity to form chemical bonds to at least two other monomer molecules. Polymers are chemically unreactive, solids at room temperature, malleable, tough, and are electrical insulators.
<em>Similarities- </em>They both makeup larger forms of matter.
<u><em>Intermolecular Forces</em></u>
<em>Differences: </em>Polymers are held together by covalent bonds, hydrogen bonds, and dispersion bonds. Monomers are <u><em>only</em></u> held together by hydrogen bonds.
<em>Similarities: </em>They can both be bonded together by hydrogen bonds.