The area of the sector, to 4 decimal places, is 78.6794 cm².
We have given that,
Sector Area= ( angle of sector/360). R2
We have to determine the Sector Area
<h3>What is the Area of a Sector of a Circle?</h3>
Area of sector = ∅/360 × πr².
We have given the following:
∅ = 46°
Radius (r) = 14 cm
Area of sector = 46/360 × π(14²)
Area of sector ≈ 78.6794 cm²
The area of the sector is approximately 78.6794 cm².
Learn more about the area of the sector on:
brainly.com/question/8159268
#SPJ1
Density = Mass/Volume
Mass= Density x volume
Volume= mass/density
You can either use the inverse function theorem or compute the general derivative using implicit differentiation. The first method is slightly faster.
The IFT goes like this: if f(x) is invertible and f(a) = b, then finv(b) = a (where "finv" means "inverse of f").
By definition of inverse functions, we have
f(finv(x)) = finv(f(x)) = x
Differentiating both sides of the second equality with respect to x using the chain rule gives
finv'(f(x)) * f'(x) = 1
When x = a, we get
finv'(b) * f'(a) = 1
or
finv'(b) = 1/f'(a)
Now let f(x) = sin(x), which is invertible over the interval -π/2 ≤ x ≤ π/2. In the interval, we have sin(x) = √3/2 when x = π/3. We also have f'(x) = cos(x).
So we take a = π/3 and b = √3/2. Then
arcsin'(√3/2) = 1/cos(π/3) = 1/(1/2) = 2
Public class GeometricSequence{ private double initialValue; private double multiplier; } initialValue = initial; multiplier = mult;
Answer:
a. 400√2 + 3,600 m2
Step-by-step explanation:
just answered this question ;)