The dimensions and volume of the largest box formed by the 18 in. by 35 in. cardboard are;
- Width ≈ 8.89 in., length ≈ 24.89 in., height ≈ 4.55 in.
- Maximum volume of the box is approximately 1048.6 in.³
<h3>How can the dimensions and volume of the box be calculated?</h3>
The given dimensions of the cardboard are;
Width = 18 inches
Length = 35 inches
Let <em>x </em>represent the side lengths of the cut squares, we have;
Width of the box formed = 18 - 2•x
Length of the box = 35 - 2•x
Height of the box = x
Volume, <em>V</em>, of the box is therefore;
V = (18 - 2•x) × (35 - 2•x) × x = 4•x³ - 106•x² + 630•x
By differentiation, at the extreme locations, we have;
Which gives;
6•x² - 106•x + 315 = 0
Therefore;
x ≈ 4.55, or x ≈ -5.55
When x ≈ 4.55, we have;
V = 4•x³ - 106•x² + 630•x
Which gives;
V ≈ 1048.6
When x ≈ -5.55, we have;
V ≈ -7450.8
The dimensions of the box that gives the maximum volume are therefore;
- Width ≈ 18 - 2×4.55 in. = 8.89 in.
- Length of the box ≈ 35 - 2×4.55 in. = 24.89 in.
- The maximum volume of the box, <em>V </em><em> </em>≈ 1048.6 in.³
Learn more about differentiation and integration here:
brainly.com/question/13058734
#SPJ1
Answer:
0.0008
Step-by-step explanation:
divide 0.08 by 100
answer is 0.0008
Answer:
exact form: 13/5
Decimal form: 2.6
x= 2 3/5
Step-by-step explanation:
3x+4x-7=8-3x+11
7x-7=8-3+11
7x-19-3x
7x-7 + 7 =-3x+19+7
7x=-3+26
10x=26
x= 13/5
It's C first find 3/5 of the horoziotal
In order to answer that question, we need to know the scale of the map.
Without that information, no answer is possible.
I think you have it in the first part of the question ... the part you decided
not to post.
_________________________
OK. Now that you've provided the scale of the map,
answering the question is a piece-o-cake.
Use a proportion:
(1 inch on the map) / (4 miles on the ground) = ('x' on the map) / (17 miles on the ground)