<span> I am assuming you want to prove:
csc(x)/[1 - cos(x)] = [1 + cos(x)]/sin^3(x).
</span>
<span>If we multiply the LHS by [1 + cos(x)]/[1 + cos(x)], we get:
LHS = csc(x)/[1 - cos(x)]
= {csc(x)[1 + cos(x)]/{[1 + cos(x)][1 - cos(x)]}
= {csc(x)[1 + cos(x)]}/[1 - cos^2(x)], via difference of squares
= {csc(x)[1 + cos(x)]}/sin^2(x), since sin^2(x) = 1 - cos^2(x).
</span>
<span>Then, since csc(x) = 1/sin(x):
LHS = {csc(x)[1 + cos(x)]}/sin^2(x)
= {[1 + cos(x)]/sin(x)}/sin^2(x)
= [1 + cos(x)]/sin^3(x)
= RHS.
</span>
<span>I hope this helps! </span>
The better bargain is the 4 quarts
This is always ''interesting'' If you see an absolute value, you always need to deal with when it is zero:
(x-4)=0 ===> x=4,
so that now you have to plot 2 functions!
For x<= 4: what's inside the absolute value (x-4) is negative, right?, then let's make it +, by multiplying by -1:
|x-4| = -(x-4)=4-x
Then:
for x<=4, y = -x+4-7 = -x-3
for x=>4, (x-4) is positive, so no changes:
y= x-4-7 = x-11,
Now plot both lines. Pick up some x that are 4 or less, for y = -x-3, and some points that are 4 or greater, for y=x-11
In fact, only two points are necessary to draw a line, right? So if you want to go full speed, choose:
x=4 and x= 3 for y=-x-3
And just x=5 for y=x-11
The reason is that the absolute value is continuous, so x=4 works for both:
x=4===> y=-4-3 = -7
x==4 ====> y = 4-11=-7!
abs() usually have a cusp int he point where it is =0
Hope it helps, despite being this long!
Answer:
The runners drank 661 bottles of water.
Step-by-step explanation:
Subtract 661 from 750, and you are left with 89.