Answer:
y = -2
Step-by-step explanation:
First, we subtract 2y on both sides:
-24 = 12y
Then, we divide 12 on both sides:
y = -2
And we're done ^^ hope this helps!
Answer:
Step-by-step explanation:
Given function:
To find , simply input into the function:
The area of the triangle is
A = (xy)/2
Also,
sqrt(x^2 + y^2) = 19
We solve this for y.
x^2 + y^2 = 361
y^2 = 361 - x^2
y = sqrt(361 - x^2)
Now we substitute this expression for y in the area equation.
A = (1/2)(x)(sqrt(361 - x^2))
A = (1/2)(x)(361 - x^2)^(1/2)
We take the derivative of A with respect to x.
dA/dx = (1/2)[(x) * d/dx(361 - x^2)^(1/2) + (361 - x^2)^(1/2)]
dA/dx = (1/2)[(x) * (1/2)(361 - x^2)^(-1/2)(-2x) + (361 - x^2)^(1/2)]
dA/dx = (1/2)[(361 - x^2)^(-1/2)(-x^2) + (361 - x^2)^(1/2)]
dA/dx = (1/2)[(-x^2)/(361 - x^2)^(1/2) + (361 - x^2)/(361 - x^2)^(1/2)]
dA/dx = (1/2)[(-x^2 - x^2 + 361)/(361 - x^2)^(1/2)]
dA/dx = (-2x^2 + 361)/[2(361 - x^2)^(1/2)]
Now we set the derivative equal to zero.
(-2x^2 + 361)/[2(361 - x^2)^(1/2)] = 0
-2x^2 + 361 = 0
-2x^2 = -361
2x^2 = 361
x^2 = 361/2
x = 19/sqrt(2)
x^2 + y^2 = 361
(19/sqrt(2))^2 + y^2 = 361
361/2 + y^2 = 361
y^2 = 361/2
y = 19/sqrt(2)
We have maximum area at x = 19/sqrt(2) and y = 19/sqrt(2), or when x = y.
Answer:
String
2.
4
6
Percussion
5
10
15
Step-by-step explanation: