I believe the first blank is inertia
Elements<span>simplest form of matter that can exist under normal laaboratory conditions</span>
Answer:
0.135 mole of H2.
Explanation:
We'll begin by calculating the number of mole in 3.24 g of Mg. This can be obtained as follow:
Mass of Mg = 3.24 g
Molar mass of Mg = 24 g/mol
Mole of Mg =?
Mole = mass /Molar mass
Mole of Mg = 3.24/24
Mole of Mg = 0.135 mole
Next, we shall write the balanced equation for the reaction. This is illustrated below:
Mg + 2HCl —> MgCl2 + H2
From the balanced equation above,
1 mole of Mg reacted to produce 1 mole of H2.
Finally, we shall determine the number of mole of H2 produced by reacting 3.24 g (i.e 0.135 mole) of Mg. This can be obtained as follow:
From the balanced equation above,
1 mole of Mg reacted to produce 1 mole of H2.
Therefore, 0.135 mole of Mg will also react to produce 0.135 mole of H2.
Thus, 0.135 mole of H2 can be obtained from the reaction.
Moles of H₂ are needed to produce 9.33 moles of NH₃ : 13.995
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
The reaction coefficient in a chemical equation shows the mole ratio of the reactants and products
Reaction for the synthesis of ammonia :
N₂+3H₂⇒2NH₃
moles of NH₃ = 9.33
From equation, mol ratio of H₂ : NH₃ = 3 : 2, so mol H₂ :