Answer:
Atoms He (Avogadro’s number) → Moles of He (molar mass of He) → Mass of He
• molar mass of He (from the periodic table) = 4.003 g/mol
• Avogadro’s Number: Avogadro’s number gives us the number of entities present in 1 mole: 6.022 × 1023 He atoms in 1 mole of He
hope this is help full please mark me Brainliest
Explanation:
(a) potassium oxide with water
According to reaction,1 mole of potassium oxide reacts with 1 mole of water to give 1 mole of potassium hydroxide.
(b) diphosphorus trioxide with water
According to reaction,1 mole of diphosphorus trioxide reacts with 2 moles of water to give 2 moles of phosphorus acid.
(c) chromium(III) oxide with dilute hydrochloric acid,
According to reaction,1 mole of chromium(III) oxide reacts with 6 moles of hydrochloric acid to give 2 moles of chromium(III) chloride and 3 moles of water.
(d) selenium dioxide with aqueous potassium hydroxide
According to reaction,1 mole of selenium dioxide reacts with 2 moles of potassium hydroxide to give 1 mole of potassium selenite and 1 mole of water.
155,500
I did this to the best of my ability. I have a hard time comprehending things sometimes so I’m so so so sorry if it’s wrong
Answer:
Coefficients are the numbers in front of the formulas.