Answer:
Rubidium-85=61.2
Rubidium-87=24.36
Atomic Mass=85.56 amu
Explanation:
To find the atomic mass, we must multiply the masses of the isotope by the percent abundance, then add.
<u>Rubidium-85 </u>
This isotope has an abundance of 72%.
Convert 72% to a decimal. Divide by 100 or move the decimal two places to the left.
- 72/100= 0.72 or 72.0 --> 7.2 ---> 0.72
Multiply the mass of the isotope, which is 85, by the abundance as a decimal.
- mass * decimal abundance= 85* 0.72= 61.2
Rubidium-85=61.2
<u>Rubidium-87</u>
This isotope has an abundance of 28%.
Convert 28% to a decimal. Divide by 100 or move the decimal two places to the left.
- 28/100= 0.28 or 28.0 --> 2.8 ---> 0.28
Multiply the mass of the isotope, which is 87, by the abundance as a decimal.
- mass * decimal abundance= 87* 0.28= 24.36
Rubidium-87=24.36
<u>Atomic Mass of Rubidium:</u>
Add the two numbers together.
- Rb-85 (61.2) and Rb-87 (24.36)
Answer:
moving i think! Hope this helps
Explanation:
Answer:
Esterification reaction
Explanation:
An esterification reaction is an organic reaction involving an organic acid and an alkanol to give an ester or an ethanoate and water
Like the name suggests, an ester is the product formed in an esterification reaction alongside water. It is like a neutralization reaction but this time it solely contains organic molecules. These molecules react with each other to give rise to another organic molecule which is a member of a different homologous series.
Practically, to form ethyl ethanoate, ethanoic acid react with ethanol in the presence of concentrated sulphuric acid which catalyses the reaction.
The mass decay rate is of the form
where
m₀ = 3000 g,the initial mass
k = the decay constant
t = time, years.
Because the half-life is 30 years, therefore
After 60 years, the mass remaining is
Answer: 750 g
Answer:
B. Of
Explanation:
They had good taste of music.
But I think 'in' is the best preposition.