Answer:6144
Step-by-step explanation:
If f(1)=6f(1)=6 and f(n)=4f(n-1)f(n)=4f(n−1) then find the value of f(6)f(6).
f(1)=
f(1)=
\,\,6
6
f(\color{darkgreen}{2})=
f(2)=
\,\,4f(\color{darkgreen}{2}-1)
4f(2−1)
=
=
\,\,4f(1)
4f(1)
=
=
\,\,4(6)
4(6)
Substitute f(1)=6
f(2)=
f(2)=
\,\,24
24
f(\color{darkgreen}{3})=
f(3)=
\,\,4f(\color{darkgreen}{3}-1)
4f(3−1)
=
=
\,\,4f(2)
4f(2)
=
=
\,\,4(24)
4(24)
Substitute f(2)=24
f(3)=
f(3)=
\,\,96
96
f(\color{darkgreen}{4})=
f(4)=
\,\,4f(\color{darkgreen}{4}-1)
4f(4−1)
=
=
\,\,4f(3)
4f(3)
=
=
\,\,4(96)
4(96)
Substitute f(3)=96
f(4)=
f(4)=
\,\,384
384
f(\color{darkgreen}{5})=
f(5)=
\,\,4f(\color{darkgreen}{5}-1)
4f(5−1)
=
=
\,\,4f(4)
4f(4)
=
=
\,\,4(384)
4(384)
Substitute f(4)=384
f(5)=
f(5)=
\,\,1536
1536
f(\color{darkgreen}{6})=
f(6)=
\,\,4f(\color{darkgreen}{6}-1)
4f(6−1)
=
=
\,\,4f(5)
4f(5)
=
=
\,\,4(1536)
4(1536)
Substitute f(5)=1536
f(6)=
f(6)=
\,\,6144
6144
\text{Geometric Sequence:}
Geometric Sequence:
Common ratio of 4
6,24,96,384,1536,6144, ...
6,24,96,384,1536,6144,...
\text{Final Answer:}
Final Answer:
6144