Answer:
7.59 L
Explanation:
- Use combined gas law formula and rearrange.
- Change C to K
- Hope that helped! Please let me know if you need further explanation.
The reaction is missing the Zn(s) in the reactants. The stoichiometry of the copper/zinc is 1 mole to 1 mole
Emission spectrum results from the movement of an electron from a higher to a lower energy level. The frequency of the photon is 5.5 * 10^14 Hz.
From the formula;
E = hc/λ
h = Plank's constant = Js
c = speed of light=
λ = wavelength = m
E =
E = J
Also;
E =hf
Where;
h = Planks's constant
f = frequency of photon
f = E/h
f =
f = Hz
Learn more: brainly.com/question/18415575
The answer is 0.59 M.
Molar mass (Mr) of MgCl₂ is the sum of the molar masses of its elements.
So, from the periodic table:
Mr(Mg) = 24.3 g/l
Mr(Cl) = 35.45 g/l
Mr(MgCl₂) = Mr(Mg) + 2Mr(Cl) = 24.3 + 2 · 35.45 = 24.3 + 70.9 = 95.2 g/l
So, 1 mol has 95.2 g/l.
Our solution contains 55.8g in 1 l of solution, which is 55.8 g/l
Now, we need to make a proportion:
1 mole has 95.2 g/l, how much moles will have 55.8 g/l:
1 M : 95.2 g/l = x : 55.8 g/l
x = 1 M · 55.8 g/l ÷ 95.2 g/l ≈ 0.59 M
Answer: Heat of the solution = mass water × specific heat water × change in temperature
mass water = 260ml (1.00g/ml ) = 260g
specific heat of water = c(water) = 4.184J/ g°C
Heat change of water = final temperature - initial temperature
= 26.5 - 21.2
= 5.3 °C
H = 260 g ( 4.184J/g°C ) (5.3°C) = 5765J
Molar heat =
= 16473J/mol
Explanation: finding molar heat requires first to look at specific heat of water and the change of water temperature