Answer:
the electrolysis reaction is a non- spontaneous reaction
Explanation:
Since electrons flow from it, the anode in an electrolytic cell is positive, while the cathode is negative when electrons flow into it. The device functions like a galvanic cell in that direction. In an electrolytic cell, an external voltage is applied and that is what causes a non spontaneous reaction
Answer: B. 1:2
Explanation: Beryllium and chlorine forms a binary ionic compound. Ionic compound is formed when a metal loses its electrons to a receiving non metal. Beryllium (metal) has two valence electrons while chlorine (nonmetal) has seven valence electrons, and so a beryllium atom has to give out its two valence electrons to attain a duplet stable structure while a chlorine atom will gain one electron to attain its stable octet structure. In the reaction between beryllium and chlorine, two atoms of chlorine have to accept the two electrons from one beryllium atom to attain their stable octet structure.
The formula of the compound formed is BeCl2.
The answer is C. They lower the activation energy of an elementary step of a reaction
This makes the reaction rate to increase since less energy is required to make a reaction occur.
Answer:
6.9 ml of concentrate
Explanation:
100 ml of .1 M will require .01 moles
from a 1.45 M solution, .01 mole would be
.01 mole / ( 1.45 mole / liter) = 6.9 ml of the concentrate then dilute to 100 ml
Answer: The statement (B) is not true about chemical reactions.
Explanation:
A chemical reaction rate is affected by the several factors few of which are temperature, concentration of reactants, surface area etc.
In a chemical reaction, if temperature is increased then the rate of reaction will increase because it will increase the average kinetic energy of the reactant molecules. Thus, large number of molecules will have minimum energy required for an effective collision.
It is known that increasing the amount of reactants will increase the rate of reaction.
Therefore, rate of reaction will change if concentration or temperature is changed.
Hence, the statement (B) is not true about chemical reactions.