Answer:
Delivered small RNAs can inhibit protein A production through the RNA interference (RNAi) mechanism, and thus impairs angiogenesis
Explanation:
The pregnancy-associated plasma protein-A is a protease enzyme involved in the formation of new blood vessels by increasing insulin-like growth factor I (IGF-I) bioavailability. Moreover, small RNAs (<200 nucleotides in length, generally 18 to 30 nucleotides) are non-coding RNA molecules that function in RNA silencing through the RNA interference (RNAi) pathway. Small RNAs are widely used in molecular biology laboratories because they can be delivered into specific cells in order to silence target mRNAs such as, in this case, the mRNA encoding protein A, by complementary base pairing and thereby inducing translational repression. In consequence, mRNAs complementary to delivered small RNAs are silenced through RNAi pathways, i.e., by cleavage of the target mRNA and/or mRNA destabilization.
Answer:
Double-stranded DNA
Explanation:
If a virus requires to transport its genome in the nucleus to produce viral protein then the viral genome content must be DNA. This DNA of the virus will use the RNA polymerase of the host cell and will first convert into mRNA in the nucleus.
Then the mRNA of the virus will come out of the nucleus because the protein synthesis takes place outside the nucleus and in the cytoplasm. So in the cytoplasm by using host translational machinery the viral mRNA will code for viral proteins. So the correct answer is double-stranded DNA.
Answer:
<u>Summarized data</u>
Explanation:
A data summary provides a comprehensive report of experimental findings. This makes the analysis of data easier by answering key research objectives outlined in the experimental procedure.
Also, summaries allow for tracking trends and procedural changes, observations and potential limitations; this makes arriving conclusions much easier.