The answer is 12.4.I think its correct answer.
Answer:
Helium, this noble gas has the least density at STP
Explanation:
12 times breathe give 240 ml of pure . Each breathe gives 20 ml of .
Let us consider, volume of air per breathe= x ml.
Pure from inhaled air= ml and Pure from exhaled air= ml.
Pure from inhaled and exhaled air= 20 ml
So, + = 20
Therefore, x = 55.5 ml
So, volume of air per breath= 55.5 ml.
<span>For equation A + 3B + 2C ---> 2D,
1 mole of A will produce 2 moles of D
3 moles of B will produce 2 moles of D, so 1 mole of B will produce 2/3 moles of D
2 moles of C will produce 2 moles of D, so 1 mole of C will produce 1 mole of D
If only 1 mole of B is present, only 2/3 moles of D can be produced. This is regardless of the number of moles of A and C. B is the limiting reactant and the maximum number of moles of D expected is 2/3.</span>
According to the balanced equation of the reaction:
2C2H2 + 5O2 → 4CO2 + 2H2O
So we can mention all as liters,
A) as we see that 2 liters of C2H2 react with 5 liters of oxygen to produce 4 liters of CO4 and 2 liters of H2O
So, when we have 75L of CO2
and when we have 2 L of C2H2 reacts and gives 4 L of CO2
2C2H2 → 4CO2
∴ The volume of C2H2 required is:
= 75L / 2
= 37.5 L
B) and, when we have 75 L of CO2
and 4CO2 → 2H2O
∴ the volume of H2O required is:
= 75 L /2
= 37.5 L
C) and from the balanced equation and by the same way:
when 5 liters O2 reacts to give 4 liters of CO2
and we have 75 L of CO2:
5 O2 → 4 CO2
?? ← 75 L
∴ the volume of O2 required is:
= 75 *(5/4)
= 93.75 L
D) about the using of the number of moles the answer is:
no, there is no need to find the number of moles as we called everything in the balanced equation by liters and use it as a liter unit to get the volume, without the need to get the number of moles.