Newton's 2nd law of motion:
Force = (mass) x (acceleration)
Divide each side by (mass):
Acceleration = (force) / (mass)
= (100 N) / (50 kg)
= 2 m/s²
The average speed of the whole travel is equal to <u>400 mph</u>.
Why?
From the statement, we know that whole travel is divided into three parts. For the first part (traveling from New York to Chicago), we have that it was 3.25 hours and the covered distance was half of the total distance (1400mi). For the second part, we have that it was 1 hour (layover time), and the covered no distance. For the third part (traveling from Chicago to Los Angeles), we have that it was 2.75 hours, and it took the other half of the total distance (1400mi).
We can calculate the average speed of the whol travel using the following formula:
Now, substituting and calculating, we have:
Hence, we have the average speed of the whole travel is equal to 400 mph.
Have a nice day!
Answer: It opposes the flow of electrons.
Explanation: just did the quiz on
Hello!
a) Assuming this is asking for the minimum speed for the rock to make the full circle, we must find the minimum speed necessary for the rock to continue moving in a circular path when it's at the top of the circle.
At the top of the circle, we have:
- Force of gravity (downward)
*Although the rock is still connected to the string, if the rock is swinging at the minimum speed required, there will be no tension in the string.
Therefore, only the force of gravity produces the net centripetal force:
We can simplify and rearrange the equation to solve for 'v'.
Plugging in values:
b)
Let's do a summation of forces at the bottom of the swing. We have:
- Force due to gravity (downward, -)
- Tension force (upward, +)
The sum of these forces produces a centripetal force, upward (+).
Rearranging for 'T":
Plugging in the appropriate values: