Answer:
Here is the full question:
(A) If a closed container contains a mouse as well as enough food, water, and oxygen for the mouse to live for 3 weeks,
How much will the container weigh 1 and 2 weeks later after the mouse has eaten, drunk and exercised (respiration is CO2 emission), and why?
(B) If the mouse was in a wire cage and only the weights of the mouse, food, and water were considered, would you come to the same answer as in (A) and why?
Explanation:
(A) The mouse will weigh the same. This is because solids, liquid, and gases cannot escape the closed container. All of the life processes involving reactions conserve the atoms involved. Some of those atoms will appear in the form of gases, some as solids, and others as liquids but all will be retained in the closed container.
(B) In a wire cage, gases can escape. This means that the weight will not be the same after 1 and 2 weeks. The weight would be less than the original weight of the mouse, it's food, and it's water.
Answer: The kinetic energy of the flying bird is 56 Joules.
Explanation:
Mass of the bird = 7 kg
Velocity of the flying bird = 4 m/s
Kinetic energy of the bird will be given by :
The kinetic energy of the flying bird is 56 Joules.
Flash floods will be the correct answer
Answer:
Unlike matter, as energy flows through an ecosystem in one direction, from photosynthetic organisms to herbivores to omnivores and carnivores and decomposers, less and less energy becomes available to support life.
Explanation:
Primary producers use energy from the sun to produce their own food in the form of glucose, and then primary producers are eaten by primary consumers who are in turn eaten by secondary consumers, and so on, so that energy flows from one trophic level, or level of the food chain, to the next.
Energy is acquired by living things in three ways: photosynthesis, chemosynthesis, and the consumption and digestion of other living or previously-living organisms by heterotrophs.
Living organisms would not be able to assemble macromolecules (proteins, lipids, nucleic acids, and complex carbohydrates) from their monomeric subunits without a constant energy input.