<h2>
Answer: 1000 J</h2>
The Work done by a Force refers to the release of potential energy from a body that is moved by the application of that force to overcome a resistance along a path.
It should be noted that it is a scalar magnitude, and its unit in the International System of Units is the Joule (like energy). Therefore, 1 Joule is the work done by a force of 1 Newton when moving an object, in the direction of the force, along 1 meter:
Now, when the applied force is constant and the direction of the force and the direction of the movement are parallel, the equation to calculate it is:
(1)
When they are not parallel, both directions form an angle, let's call it . In that case the expression to calculate the Work is:
(2)
For example, in order to push the 200 N box across the floor, you have to apply a force along the distance to overcome the resistance of the weight of the box (its 200 N).
In this case both <u>(the force and the distance in the path) are parallel</u>, so the work performed is the product of the force exerted to push the box by the distance traveled . as shown in equation (1).
Hence:
>>>>This is the work
If an object is on a frictionless surface, to keep it at a constant velocity you can’t apply any force because otherwise, the object will accelerate, and the velocity will change.
Answer:
Resonance depends on objects, this may happen for example when you play guitar in a given room, you may find that for some notes the walls or some object vibrate more than for others. This is because those notes are near the frequency of resonance of the walls.
So waves involved are waves that can move or affect objects (in this case the pressure waves of the sound, and the waves that are moving the wall).
this means that the waves are mechanic waves.
Now, in electromagnetics, you also can find resonance frequencies for electromagnetic waves trapped in things called cavities, but this is a different topic.
Producing plastics benefits the economy by employing workers and helps the economy of every state by spending billions of dollars on shipping plastic products.
Answer:
b. 0.6m/s, 0.7m/s, 0.61m/s, 0.62m/s
Explanation:
Precision of a measurement is the closeness of the experimental values to one another. Hence, experimental measurements are said to be precise if they are close to each other irrespective of how close they are to the accepted value. Precision can be determined by finding the range of each experimental value. The measurement with the LOWEST RANGE represents the MOST PRECISE.
Note: Range is the highest value - lowest value
Set A: 1.5 - 0.8 = 0.7
Set B: 0.7 - 0.6 = 0.1
Set C: 2.4 - 2.0 = 0.4
Set D: 3.1 - 2.9 = 0.2
Set B has the lowest range (0.1), hence, represent the most precise value.