Answer:
<h3>1.03684m</h3>
Explanation:
Using the formula for calculating range expressed as;
R = U√2H/g where
R is the distance moves in horizontal direction = 18.4m
H is the height
U is the velocity of the baseball = 40m/s
g is the acceleration due to gravity = 9.8m/s²
Substitute the given parameters into the formula and calculate H as shown;
18.4 = 40√2H/9.8
18.4/40 = √2H/9.8
0.46 = √2H/9.8
square both sides;
(0.46)² = (√2H/9.8)²
0.2116 = 2H/9.8
2H = 9.8*0.2116
2H = 2.07368
H = 2.07368/2
H = 1.03684m
Hence the ball is 1.03684m below the launch height when it reached home plate.
The wavelength of the light beam required to turn back all the ejected electrons is 497 nm which is option (b).
- Work function is a material property defined as the minimum amount of energy required to infinitely remove electrons from the surface of a particular solid.
- The potential difference required to support all emitted electrons is called the stopping potential which is given by .....(1)
- where is the stopping potential and e is the charge of the electron given by .
It is given that work function (Ф) of monochromatic light is 2.50 eV.
Einstein photoelectric equation is given by:
....(2)
where K.E(max) is the maximum kinetic energy.
Substituting (1) into (2) , we get
As we know that ....(3)
where Speed of light, and Planck's constant ,
From equation (3) , we get
Learn about more einstein photoelectric equation here:
brainly.com/question/11683155
#SPJ4
Here in crash test the two forces are acting on the dummy in two different directions
As we know that force is a vector quantity so we need to use vector addition laws in order to find the resultant force on it.
So here two forces are given in perpendicular direction with each other so as per vector addition law we need to use Pythagoras theorem to find the resultant of two vectors
so we can say
here given that
now we will plug in all data in the above equation
so it will have net force 4501.9 N which will be reported by sensor
Answer:
jejjdedjd sidjjejdd jsms
Explanation:
jdjdndjdjjdj jsnssjns jsjsjs
Answer:
The moment of inertia decreased by a factor of 4
Explanation:
Given;
initial angular velocity of the ice skater, ω₁ = 2.5 rev/s
final angular velocity of the ice skater, ω₂ = 10.0 rev/s
During this process we assume that angular momentum is conserved;
I₁ω₁ = I₂ω₂
Where;
I₁ is the initial moment of inertia
I₂ is the final moment of inertia
Therefore, the moment of inertia decreased by a factor of 4