Answer : The energy of one photon of hydrogen atom is,
Explanation :
First we have to calculate the wavelength of hydrogen atom.
Using Rydberg's Equation:
Where,
= Wavelength of radiation
= Rydberg's Constant = 10973731.6 m⁻¹
= Higher energy level = 3
= Lower energy level = 2
Putting the values, in above equation, we get:
Now we have to calculate the energy.
where,
h = Planck's constant =
c = speed of light =
= wavelength =
Putting the values, in this formula, we get:
Therefore, the energy of one photon of hydrogen atom is,
Answer:
The thickness of the oil slick is
Explanation:
Given that,
Index of refraction = 1.28
Wave length = 500 nm
Order m = 1
We need to calculate the thickness of oil slick
Using formula of thickness
Where, n = Index of refraction
t = thickness
= wavelength
Put the value into the formula
Hence, The thickness of the oil slick is
Answer:
182.28 W
Explanation:
Here ,
m = 7.30 Kg
distance , d= 28.0 m
time , t = 11.0 s
average power supplied = change in potential energy/time
average power supplied = m×g×d/time
average power supplied = 7.30×9.81×28/11
average power supplied = 182.28 W
the average power supplied is 182.28 W
<span>Visible satellite images are like photos which are dependent on visible
light from the sun so they work best during the day. The sensor works by
detecting radiation within the range that wavelength is visible. Because of
this, the rays is usually seen as reaching earth from the East. </span>
Solution:
We have,
Power [P] = 25000 Watt
Mass [m] = 6000 kg
Height [h] = 20 metres
Time [t] = ?
Now,
P = W/t = F x d/t = mxgx h/t
Or, 25000 = 6000 x 10 x 20/25000 [.......g = 10
m/s^2]
Or, t = 6000 x 10 x 20/25000
Or, t = 1200/25
Therefore, t = 48 second
Hence, the required time for the crane to lift the load is 48 seconds.