Answer:9.17 m/s^2
Explanation:
mass=1200kg
Force=11 x 10^3 N
Acceleration=force ➗ mass
Acceleration=11 x 10^3 ➗ 1200
Acceleration=9.17
Acceleration=9.17 m/s^2
Answer:
ΔU = - 310.6 J (negative sign indicates decrease in internal energy)
W = 810.6 J
Explanation:
a.
Using first law of thermodynamics:
Q = ΔU + W
where,
Q = Heat Absorbed = 500 J
ΔU = Change in Internal Energy of Gas = ?
W = Work Done = PΔV =
P = Pressure = 2 atm = 202650 Pa
ΔV = Change in Volume = 10 L - 6 L = 4 L = 0.004 m³
Therefore,
Q = ΔU + PΔV
500 J = ΔU + (202650 Pa)(0.004 m³)
ΔU = 500 J - 810.6 J
<u>ΔU = - 310.6 J (negative sign indicates decrease in internal energy)</u>
<u></u>
b.
The work done can be simply calculated as:
W = PΔV
W = (202650 Pa)(0.004 m³)
<u>W = 810.6 J</u>
It is the heat required to raise the temperature of the unit mass of a given substance by a given amount (usually one degree).
Answer: The infra red waves is located between microwave and visible light based on their WAVELENGTH and FREQUENCY of occurrence.
Explanation:
Electromagnetic waves are those waves that do not require or need a material medium for its propagation, but they are able to travel through a vacuum. They exhibit or show all properties associated or connected with light. They are undeflected in electric and magnetic fields. These electromagnetic waves are arranged in order of their FREQUENCY and WAVELENGTHS which is known as ELECTROMAGNETIC SPECTRUM.
FREQUENCY is defined as the number of cycles which the wave completes in one second and is measured in Hertz(Hz). While WAVELENGTH is defined as the distance between two successive crests or troughs of waves which is measured in meter (m).
The electromagnetic spectrum is made up of the following rays which is arranged from the biggest wavelengths to the smallest:
--> Radiowaves
--> microwave :
--> infrared rays:
--> visible light:
--> ultraviolet rays
--> x-rays and
--> Gamma rays.
According to the arrangement of the spectrum above, the microwave has a higher wavelength and frequency than the infrared rays, while the visible light has a lower wavelength and frequency than the infrared rays.
True, I just learned this a week ago. Is this for Chemistry?