Answer:
Step-by-step explanation:
<u>Eigenvalues of a Matrix</u>
Given a matrix A, the eigenvalues of A, called are scalars who comply with the relation:
Where I is the identity matrix
The matrix is given as
Set up the equation to solve
Expanding the determinant
Operating Rearranging
Factoring
Solving, we have the eigenvalues
Answer:domain 4 range 6
Step-by-step explanation:
Answer:
18? i don't think it's right but i tried mental math
Step-by-step explanation:
PEMDAS
Answer:
B: 25%
Step-by-step explanation:
$90.00 - $67.50 = $22.5
$22.5 / $90 = 0.25 = 25%
Answer:
B: 25%
The perimeter is the total of adding all of the side lengths together.
A square has 4 equal side lengths.
So the perimeter of a square is:
P = s + s + s + s or P = 4s
[P = perimeter s = side lengths of the square]
Since you know the side length of the square is (x + 2 1/4), you can replace s with (x + 2 1/4)
P = 4s
P = 4(x + 2 1/4) Multiply 4 into (x + 2 1/4)
P = 4x + 8 4/4
P = 4x + 9
Since you know the perimeter, you can plug it in.(you could have also plugged it in in the beginning)
P = 4x + 9
14 = 4x + 9 Subtract 9 on both sides
5 = 4x Divide 4 on both sides
5/4 = x
Now that you know x, find the side length of the square.
(x + 2 1/4)
(5/4 + 2 1/4)
2 6/4 = 3 2/4 = 3 1/2 units or 3.5 units
To find the area of a square, you multiply 2 of the sides together:
A = s · s
A = 3.5 · 3.5
A = 12.25 units²