Answer:
you have to subtract those two numbers
Answer: Find the measures of an exterior angle and an interior angle given the number of sides of each regular polygon. Round to the nearest tenth, if necessary. 24 b 15, 345 24, 156 7.5, 172.5 15, 165
Step-by-step explanation: sum, S, of the measure of the interior angles of a polygon with n sides is: ... The sum of the interior angles of a 24 -gon is 3960. ... angles of a polygon is (n−2)⋅180 , where n is the number of sides. ... Each exterior angle measures 36024=15 . ... The sum of the 24 interior angles is then 24⋅165=3960 .
y - 3
g(y) = ------------------
y^2 - 3y + 9
To find the c. v., we must differentiate this function g(y) and set the derivative equal to zero:
(y^2 - 3y + 9)(1) - (y - 3)(2y - 3)
g '(y) = --------------------------------------------
(y^2 - 3y + 9)^2
Note carefully: The denom. has no real roots, so division by zero is not going to be an issue here.
Simplifying the denominator of the derivative,
(y^2 - 3y + 9)(1) - (y - 3)(2y - 3) => y^2 - 3y + 9 - [2y^2 - 3y - 6y + 9], or
-y^2 + 6y
Setting this result = to 0 produces the equation y(-y + 6) = 0, so
y = 0 and y = 6. These are your critical values. You may or may not have max or min at one or the other.