the correct IUPAC name of the compound is 1-Butanal.
<h3>What are IUPAC names?</h3>
It is a system of naming organic compounds based on the longest carbon-to-carbon single bonds. It does not matter whether these longest chains are continuous or in a ring.
Thus, when the compound with the chemical formula, CH3-CH2-CH2CHO is considered. The longest carbon-to-carbon chain is 4. The 1st carbon carries a functional group known as an aldehyde.
Aldehydes are equipped with the carbonyl group and have the general formula R−CH=O. They are also sometimes referred to as formyl.
Aldehydes are named after their parent alkane chains with a slight modification. The 'e' is replaced with 'al'
The aldehyde in this case has four carbons. This means that the parent alkane is Butane. Therefore, the name of the compound will be 1-Butanal.
More on IUPAC names can be found here: brainly.com/question/16631447
#SPJ1
Answer:
Na has the most similar configuration.
Explanation:
Na electron configuration: 1s²2s²2p⁶3s¹ or [Ne] 3s₁
Mg electron configuration: 1s²2s²2p⁶3s² or [Ne] 3s²
Be electron configuration: 1s²2s² or [He] 2s²
This is because Na and Mg are right next to each other in the same period (horizontal).
Answer:
C) H2S
Explanation:
In chemistry, the dissolution of one substance in another is dependent on the magnitude of intermolecular interaction between the two substances. Hence, if two substances do not interact in one way or the other, then one can not dissolve the other.
Let us consider the fact that NH3 is a polar molecule and it is a general principle that like dissolves like. Hence, only H2S which is also a polar molecule can effectively interact with NH3 due to dipole-dipole interaction between the two molecules.
Also, ammonia reacts with hydrogen sulphide as follows;
2NH3 + H2S → (NH4)2S
Hence H2S is more likely to dissolve in NH3.
Answer:
a) The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) 0.0035 mole
c) 0.166 M
Explanation:
Phosphoric acid is tripotic because it has 3 acidic hydrogen atom surrounding it.
The equation of the reaction is expressed as:
1 mole 3 mole
The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) if 10.00 mL of a phosphoric acid solution required the addition of 17.50 mL of a 0.200 M NaOH(aq) to reach the endpoint; Then the molarity of the solution is calculated as follows
10 ml 17.50 ml
(x) M 0.200 M
Molarity =
= 0.0035 mole
c) What was the molar concentration of phosphoric acid in the original stock solution?
By stoichiometry, converting moles of NaOH to H₃PO₄; we have
=
= 0.00166 mole of H₃PO₄
Using the molarity equation to determine the molar concentration of phosphoric acid in the original stock solution; we have:
Molar Concentration =
Molar Concentration =
Molar Concentration = 0.166 M
∴ the molar concentration of phosphoric acid in the original stock solution = 0.166 M