Answer:
9.6 Ns
Explanation:
Note: From newton's second law of motion,
Impulse = change in momentum
I = m(v-u).................. Equation 1
Where I = impulse, m = mass of the ball, v = final velocity, u = initial velocity.
Given: m = 2.4 kg, v = 2.5 m/s, u = -1.5 m/s (rebounds)
Substitute into equation 1
I = 2.4[2.5-(-1.5)]
I = 2.4(2.5+1.5)
I = 2.4(4)
I = 9.6 Ns
We are given information:
m = 0.0450 kg
Δv = 25.2 m/s
Δt = 1.95 ms = 0.00195s
To find force we use formula:
F = m * a
a is acceleration. To find it we use formula:
a = Δv / Δt
a = 25.2 / 0.00195
a = 12923.1 m/s^2
Now we can find force:
F = 0.0450 * 12923.1
F = 581.5 N
To check the effect of the ball's weight on this movement we need to calculate it and then compare it to this force.
W = m * g
W = 0.0450 * 9.81
W = 0.44145 N
We can see that weight is much smaller than the applied force so it's influence in negligible.
Mass of the bird(m) = 150 g = 0.15 kg
Speed (v) = 10 m/s
Kinetic Energy = = 7.5 J
Altitude (h) = 15 m
Gravitational Potential Energy = (0.15)(9.81)(15) = 22.0725 J
Mechanical Energy = Kinetic Energy + Potential Energy = 7.5 + 22.0725
= 29.5725 J
A decagram is 1000 times bigger than a centigram
Answer:
The average speed for the whole journey is 49.5 miles per hour.
Explanation:
Step 1 :
Here, both the ways, he covers the same distance. Then, the formula to find average speed is
= 2xy / (x+y)
Step 2 :
x ----> Rate at which he travels from New York to Washington
x = 45
y ----> Rate at which he travels from New York to Washington
y = 55
Step 3 :
So, the average speed is
= (2 ⋅ 45 ⋅ 55) / (45 + 55)
= 4950 / 100
= 49.5