Answer:
1: At temperatures below 542.55 K
2: At temperatures above 660 K
Explanation:
Hello there!
In this case, according to the thermodynamic definition of the Gibbs free energy, it is possible to write the following expression:
Whereas ΔG=0 for the spontaneous transition. In such a way, we proceed as follows:
1:
It means that at temperatures lower than 542.55 K the reaction will be spontaneous.
2:
It means that at temperatures higher than 660 K the reaction will be spontaneous.
Best regards!
The answers will be 21.5 L N2
Write an balance the equation
Na2O + H2O -> 2 NaOH
Calculate the molecular mass of Na2O and NaOH from the atomic mass from the periodic table.
Na = 23
O=16
H=1
Na2O = 23 * 2 + 16 = 62
NaOH = 23+16+1= 40
For the stoichiometry of the reaction one mole of Na2O = 62g produce two mol of NaOH = 2* 40= 80 g
120 g Na2O x 80g NaOH / 62g Na2O=
154.8 g NaOH
Answer:
Molecular formula is C₂₆H₃₆O₄
Explanation:
The compound is 75.69 % C, 8.80 % H and 15.51 % O. This data means, that in 100 g of compound we have 75.69 g, 15.51 g and 8.80 g of, C, O and H, respectively. We know the molar mass of the compound, so we can work to solve the moles of each element.
In 100 g of compound we have 75.69 g C, 15.51 g O and 8.80 g H
In 412 g of compound we would have:
(412 . 75.69) / 100 = 311.8 of C
(412 . 15.51) / 100 = 63.9 g of O
(412 . 8.80) / 100 = 36.2 g of H
Now, we can determine the moles of each, that are contained in 1 mol of compound.
312 g / 12 g/mol 26 C
64 g / 16 g/mol = 4 O
36 g / 1 g/mol = 36 H
Molecular formula is C₂₆H₃₆O₄