Answer:
0.712 moles of NO₂ are formed.
Explanation:
First, we need to write the balanced equation:
2 N₂O₅(g) ⇄ 4 NO₂(g) + O₂(g)
From the balanced equation, we can see the relationship between the moles of N₂O₅ and the moles of NO₂. Every 2 moles of N₂O₅ that react, 4 moles of NO₂ are formed. Let us apply this relationship to the information given by the problem (0.356 moles of N₂O₅):
In a crystal, the molecules are closer together as they are in any solid. they have less room to move, and might even be combined together rather than individual
Answer:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
Explanation:
According to this question, sodium carbonate reacts with sulfuric acid to form aqueous sodium sulfate, carbon dioxide and water. The balanced chemical equation is as follows:
Na2CO3(aq) + H2SO4(aq) → Na2SO4(aq) + CO2(g) + H2O(l)
- Next, split compounds that are aqueous into ions.
2Na+(aq) + CO32-(aq) + 2H+(aq) + SO42-(aq) → 2Na+(aq) + SO42-(aq) + CO2(g) + H2O(l)
- Next, we cancel out the spectator ions, which are ions that remain the same in the reactants and products side of a chemical reaction. The spectator ions in this equation are 2Na+(aq) and SO42-(aq).
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
- Hence, the balanced ionic equation is as follows:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
Carbon oxides (monoxide, dioxide) are gases :)