Answer:
Where is the rest of the article to read form at?
Explanation:
Answer:
a) E₀ = 2.125 eV, b) # photon2 = 9.2 10¹⁵ photons / mm²
Explanation:
a) To calculate the energy of a photon we use Planck's education
E = h f
And the ratio of the speed of light
c = λ f
We replace
E = h c /λ
Let's calculate
E₀ = 6.63 10⁻³⁴ 3 10⁸/585 10⁻⁹
E₀ = 3.40 10⁻¹⁹ J
Let's reduce
E₀ = 3.4 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)
E₀ = 2.125 eV
b) Let's look for the energy in each pulse
P = E / t
E = P t
E = 20.0 0.45 10⁻³
E = 9 10⁻³ J
let's use a ratio of proportions (rule of three) if we have the energy of a photon (E₀), to have the energy of 9 10⁻³ J
# photon = 9 10⁻³ /3.40 10⁻¹⁹
# photon = 2.65 10¹⁶ photons
Let's calculate the areas
Focus area
A₁ = π r²
A₁ = π (3.4/2)²
A₁ = 9,079 mm²2
Area requested for calculation r = 1 mm
A₂ = π 1²
A₂ = 3.1459 mm²
Let's use another rule of three. If we have 2.65 106 photons in an area A1 how many photons in an area A2
# photon2 = 2.65 10¹⁶ 3.1459 / 9.079
# photon2 = 9.2 10¹⁵ photons / mm²
I believe they would electron rate would slow down and the molecules would shrink.
I am almost positive that this is correct. I hope it helps!
Answer:
5. Is greater than mg, always
Explanation:
If the cone has an inclination of angle β, the sum of forces will be:
x-axis (centripetal axis):
N*sin β = m*ax where ax is the centripetal acceleration
y-axis:
N*cos β - m*g = m*ay where ay is the vertical acceleration. If the block starts falling down, ay will be negative. If the block starts sliding up, ay will be positive. If the block does not move up nor down, ay=0.
Solving for N:
If ay is positive or zero, N will be greater than mg. If ay is negative, N will be less than mg.
If the block is sliding along a horizontal circular path (not up, nor down), ay = 0, so N will always be greater than mg.
Deposition:
- when a gas changes directly to a solid
- latent heat is released
- physical change, NOT a chemical change