Answer:
Ca - 63.546 g
2N - 28.014 g
2O3 - 96 g
Ca(NO3)2 = 187.56 g
187.56 g x 0.75 mol = 140.67 g
Explanation:
Hope this helps
The reaction will be: FeBr2 + K --> KBr + Fe
Balancing gives: FeBr2 + 2K --> 2KBr + Fe
The molar mass of FeBr2 is 55.85 + 2*79.9 = 215.65 g/mol.
We divide 40 g / 215.65 g/mol = 0.185 mol FeBr2
Based on stoichiometry:
(0.185 mol FeBr2)(2 mol KBr/1 mol FeBr2) = 0.370 mol KBr
Answer:
510 g NO₂
General Formulas and Concepts:
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
- Reading the Periodic Table
- Writing Compounds
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
6.7 × 10²⁴ molecules NO₂ (Nitrogen dioxide)
<u>Step 2: Define conversions</u>
Avogadro's Number
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of NO₂ - 14.01 + 2(16.00) = 46.01 g/mol
<u>Step 3: Use Dimensional Analysis</u>
<u /> = 511.901 g NO₂
<u>Step 4: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules.</em>
511.901 g NO₂ ≈ 510 g NO₂
Oxygen gas was most likely absent from Earth's primitive atmosphere. The current theory is that the Earth's early atmosphere was composed of mainly carbon dioxide and methane due to the high volcanic activity. Cyanobacteria and their use of photosynthesis was what caused earth's atmosphere to become oxygen enriched.
I hope that helps.
explain the question your asking