This is true otherwise cancer patients would have a hole in them and so would the hulk ;)
Answer:24.31
Explanation:Contribution made by isotope of mass 23.99= 23.99×78.99=1894.97
Contribution made by isotope of mass 24.99=24.99×10.00=249.9
Contribution made by isotope of mass 25.98=25.98×11.01=286.04
Total contribution=1894.97+249.9+286.04=2430.91
Average mass=2430.91÷100
=24.31
Answer:
- 602 mg of CO₂ and 94.8 mg of H₂O
Explanation:
The<em> yield</em> is measured by the amount of each product produced by the reaction.
The chemical formula of <em>fluorene</em> is C₁₃H₁₀, and its molar mass is 166.223 g/mol.
The <em>oxidation</em>, also know as combustion, of this hydrocarbon is represented by the following balanced chemical equation:
To calculate the yield follow these steps:
<u>1. Mole ratio</u>
<u />
<u>2. Convert 175mg of fluorene to number of moles</u>
- Number of moles = mass in grams / molar mass
<u>3. Set a proportion for each product of the reaction</u>
a) <u>For CO₂</u>
i) number of moles
ii) mass in grams
The molar mass of CO₂ is 44.01g/mol
- mass = number of moles × molar mass
- mass = 0.013686 moles × 44.01 g/mol = 0.602 g = 602mg
b) <u>For H₂O</u>
i) number of moles
ii) mass in grams
The molar mass of H₂O is 18.015g/mol
- mass = number of moles × molar mass
- mass = 0.00526 moles × 18.015 g/mol = 0.0948mg = 94.8 mg
<span>0.0292 moles of sucrose are available.
First, lookup the atomic weights of all involved elements
Atomic weight Carbon = 12.0107
Atomic weight Hydrogen = 1.00794
Atomic weight Oxygen = 15.999
Now calculate the molar mass of sucrose
12 * 12.0107 + 22 * 1.00794 + 11 * 15.999 = 342.29208 g/mol
Divide the mass of sucrose by its molar mass
10.0 g / 342.29208 g/mol = 0.029214816 mol
Finally, round the result to 3 significant figures, giving
0.0292 moles</span>
Answer:
1= 2H₂ + O₂ → 2H₂O
2=CaCo₃ + heat → CaO +CO₂
3=CH₄ + 2O₂ → CO₂ +2H₂O
4=HCl + NaOH → NaCl + H₂O
Explanation:
1 = Simple composition
The formation of water molecule is simple composition reaction. In this reaction two hydrogen atoms react with one oxygen atom and form one water molecules.
2H₂ + O₂ → 2H₂O
The amount of energy released is -285.83 KJ/mol. It is exothermic reaction.
2 = Simple decomposition reaction:
The break down of sodium hydrogen carbonate into sodium carbonate, carbondioxide and water is decomposition reaction. The decomposition reactions re mostly endothermic, because compound required energy to break.
2NaHCO₃ + heat → Na₂CO₃ + H₂O + CO₂
It is endothermic reaction.
Another example is:
CaCo₃ + heat → CaO +CO₂
3 = Combustion reaction
Consider the combustion of methane:
CH₄ + 2O₂ → CO₂ +2H₂O
The burning of methane is exothermic. The combustion reactions are exothermic because when fuel are burns they gives energy.
4 = Neutralization reaction
The neutralization reactions are those in which acid and base react to form the salt and the water. Some neutralization reactions are exothermic because they release heat. e.g
Consider the neutralization reaction of HCl and NaOH.
HCl + NaOH → NaCl + H₂O