Answer:
Toward the centre of the circular path
Explanation:
The can is moved in a circular path: this means that it is moving by circular motion (uniform circular motion if its tangential speed is constant).
In order to keep a circular motion, an object must have a force that pushes it towards the centre of the circular trajectory: this force is called centripetal force, and its magnitude is given by
where m is the mass of the object, v its tangential speed, r the radius of the trajectory. This force always points towards the centre of the circular path.
Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:
(This is correct because the horizontal motion has acceleration zero). Then:
Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:
Then, plugging in the given values, we obtain:
Finally, the effective spring constant of the firing mechanism is 1808N/m.
The combined amount of kinetic and potential energy of its molecules
Answer:
475
Explanation:
Cori does not exert any more force than 475 J, so 475 is the answer.
Freezing point of the water is known as 273 K
Hope this helps!