<span>PV = nRT
(4000 Torr)(5 L) = n (62.4 Torr-L/mol-K)(296K)
n = 1.08 moles
28 g/mol, 1.08 moles = 30.3 grams
your answer is
C.30.3 g</span>
Answer:
3. The temperatures of the two substances equalize.
Explanation:
- As two objects at different temperatures are placed in contact, heat is transferred from the warmer to the cooler object until the temperature of the two objects be the same.
- The amount of heat that is transferred from the warmer object is equal to the amount of heat that is transferred into the cooler object.
- This is in agreement with the law of conservation of energy.
- <em>So, the right choice is: 3. The temperatures of the two substances equalize. </em>
<em></em>
Gasoline, kerosene, and lighter fluid.
Answer:
6 x 10⁶ g Fe
Explanation:
Step 1: Set up dimensional analysis
7 x 10²⁸ atoms Fe (1 mol Fe/6.02 x 10²³ atoms Fe)(55.85 g Fe/1 mol Fe)
Step 2: Multiply, divide, and cancel out units
atoms Fe and atoms Fe cancel out.
mol Fe and mol Fe cancel out.
We should be left with g Fe.
7 x 10²⁸/6.02 x 10²³ = 116279 mol Fe
116279(55.85) = 6.49 x 10⁶ g Fe
Step 3: Sig figs
There is only 1 sig fig in this problem.
6.49 x 10⁶ g Fe ≈ 6 x 10⁶ g Fe
Answer:
0.85 mole of PBr3.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
3Br2 + 2P —> 2PBr3
From the balanced equation above,
3 moles of Br2 reacted to produce 2 moles of PBr3.
Therefore, 1.27 moles of Br2 will react to produce = (1.27 x 2)/ 3 = 0.85 mole of PBr3.
Therefore, 0.85 mole of PBr3 is produced by the reaction.