Answer:
100%
Explanation:
No matter how many factors are in the cross, if an 2 purebred (homozygous individuals) are crossed, (one dominant, one recessive) the dominant phenotype will always be displayed.
Imagine a cross with between two individuals true breeding for 6 traits. One shows all dominant genotypes, one shows all recessive genotypes. The only gametes those individuals can pass on will always produce heterozygotes.
AABBCCDDEEFFGG x aabbccddeeffgg
The first individual can only give ABCDEFG alleles. The second individual can only give abcdefg alleles. Therefore, all offspring will be AaBbCcDdEeFfGg, and will therefore express the dominant trait.
Answer:
i) Glucose
ii) β(1-4) glycosidic bonds.
iii) Oxygen
Explanation:
Cellulose is an important structural carbohydrate found in plants. It forms a major component of the plant cell wall.
Cellulose is a polysaccharide formed by monomers of glucose. These glucose monomers are joined together by covalent bonds called β(1-4) glycosidic bonds, which means that the 1st carbon of one glucose is bound to the 4th carbon of the next glucose. To make this arrangement, every other glucose molecule in cellulose is inverted, which you can see in the diagram.
Glucose monomers contain carbon, hydrogen, and oxygen only. If you look at the pattern of the molecule (remembering every second glucose is inverted), you can see that Z must be O.
The functional group denoted by Z is oxygen. The OH groups on the glucose from one cellulose chain form hydrogen bonds with oxygen atoms on the same or on another chain, holding the chains firmly together and forming very strong molecules - giving cellulose its strength.
The process that occurs before hypothesis is Identifying the variables.
Answer:
d their coats will become darker due to natural selection
Explanation: