The answer is A or the first one
Answer:
sorry I needed points ehjejejejrjrj4nn4j4j4
<h2> What are proteins made of?</h2><h3>Proteins are made up of smaller building blocks called amino acids, joined together in chains. There are 20 different amino acids. Some proteins are just a few amino acids long, while others are made up of several thousands. These chains of amino acids fold up in complex ways, giving each protein a unique 3D shape. Some, like keratin, the hair protein, form long fibres. Others, like haemoglobin, the protein that carries oxygen around your body, are roughly spherical.</h3>
Answer:
- hyperpolarization
- depolarization
- hyperpolarization
- depolarization
- hyperpolarization
- depolarization
- depolarization
Explanation:
The resting membrane potential is balanced by ion leakage and ion pumping, to get an electrical signal started the membrane potential has to lose its balance. This starts with a membrane channel opening for Na+ since Na+ concentration is higher outside the cell, ions will rush into the cell. This will change the relative voltage inside the cell. The resting potential has a voltage of -70 mV, the sodium cation entering the cell cause it to become less negative. <em>This is known as depolarization.</em>
The concentration gradient for Na+ will continue to enter the cell making the voltage to become positive reaching +30 mV. At the same time, this happens, other voltage-gated channels are also opening, a concentration gradient acts on K+, as well, as it leaves the cell, it takes a positive charge with it making the membrane potential to move back to its resting voltage of -70 mV. <em>This is called repolarization. </em>
For potassium ions to reach equilibrium the membrane voltage needs to be below -70 mV, this leads to a period of <em>hyperpolarization</em> that occurs while the K+ channels are open.
I annexed an image that illustrates this action potential process.
<em>Considering the information given during depolarization there's an increase in the number of sodium leak channels (7) making the inside of the cell more positive (2) increase in the membrane potential (4), this also implies a decrease in the extracellular concentration of potassium (6)</em>
<em>Meanwhile, during hyperpolarization an increase in the extracellular concentration of potassium (3) decreases the membrane potential (1) making the inside of the cell more negative (5).</em>
I hope you find this information useful and interesting! Good luck!<em>
</em>
Answer: 5.138 × 106
Explanation:
1.Move the decimal place to the left to create a new number from 1 up to 10.
2. Determine the exponent, which is the number of times you moved the decimal.
3. Put the number in the correct form for scientific notation (N*10^a)
Where N equals between 1 and 10, but not 10 itself, and a is an integer (positive or negative number).