Answer:
V = a * t = 9.8 m/s^2 * 2.3 s = 22.5 m/s velocity after 2.3 s
S = 1/2 g t^2 since initial speed is zero
S = 1/2 * 9.8 m/s^2 * 5.29 s^2 = 25.9 m
Answer:
2.73×10¯³⁴ m.
Explanation:
The following data were obtained from the question:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Wavelength (λ) =?
Next, we shall determine the energy of the ball. This can be obtained as follow:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Energy (E) =?
E = ½m²
E = ½ × 0.113 × 43²
E = 0.0565 × 1849
E = 104.4685 J
Next, we shall determine the frequency. This can be obtained as follow:
Energy (E) = 104.4685 J
Planck's constant (h) = 6.63×10¯³⁴ Js
Frequency (f) =?
E = hf
104.4685 = 6.63×10¯³⁴ × f
Divide both side by 6.63×10¯³⁴
f = 104.4685 / 6.63×10¯³⁴
f = 15.76×10³⁴ Hz
Finally, we shall determine the wavelength of the ball. This can be obtained as follow:
Velocity (v) = 43 m/s
Frequency (f) = 15.76×10³⁴ Hz
Wavelength (λ) =?
v = λf
43 = λ × 15.76×10³⁴
Divide both side by 15.76×10³⁴
λ = 43 / 15.76×10³⁴
λ = 2.73×10¯³⁴ m
Therefore, the wavelength of the ball is 2.73×10¯³⁴ m.
Answer:
Explanation:
To solve this problem we use the Hooke's Law:
(1)
F is the Force needed to expand or compress the spring by a distance Δx.
The spring stretches 0.2cm per Newton, in other words:
1N=k*0.2cm ⇒ k=1N/0.2cm=5N/cm
The force applied is due to the weight
We replace in (1):
We solve the equation for m:
Answer: initial velocity of bullet = 50.72m/s
Explanation:
Detailed explanation and calculation is shown in the image below.
NB: the wooden block has an initial velocity u = 0 since it was at rest.