Answer:
All description is given in explanation.
Explanation:
Van der Waals forces:
It is the general term used to describe the attraction or repulsion between the molecules. Vander waals force consist of two types of forces:
1. London dispersion forces
2. Dipole-dipole forces
1. London dispersion forces:
These are the weakest intermolecular forces. These are the temporary because when the electrons of atoms come close together they create temporary dipole, one end of an atom where the electronic density is high is create negative pole while the other becomes positive . These forces are also called induce dipole- induce dipole interaction.
2. Dipole-dipole forces:
These are attractive forces , present between the molecules that are permanently polar. They are present between the positive end of one polar molecules and the negative end of the other polar molecule.
Hydrogen bonding:
It is the electrostatic attraction present between the atoms which are chemically bonded. The one atom is hydrogen while the other electronegative atoms are oxygen, nitrogen or flourine. This is weaker than covalent and ionic bond.
Ionic bond or electrostatic attraction:
It is the electrostatic attraction present between the oppositely charged ions. This is formed when an atom loses its electron and create positive charge and other atom accept its electron and create negative charge.
Hydrophobic interaction:
It is the interaction between the water and hydrophobic material. The hydrophobic materials are long chain carbon containing compound. These or insoluble in water.
Covalent bond:
These compounds are formed by the sharing of electrons between the atoms of same elements are between the different element's atoms. The covalent bond is less stronger than ionic bond so require less energy to break as compared to the energy require to break the ionic bond.
Plants can grow from sunlight and water.
speed equals wavelength times frequency so
.7 x 500 = 350
Answer:
This question is incomplete but the correct option is B
Explanation:
This question is incomplete because of the absence of the "Reference Table S", however the question can still be answered in the absence of the table. The energy described in the question is the ionization energy (energy required to remove the most loosely bound electron in an atom). This question seeks to know the atom (from the options provided) with the least ionization energy.
Ionization energy increases from left to right across the period because it's easier to remove a single electron (valence electron) from the outermost shell than to remove two electrons from the same shell; thus the more the valence electrons (in a shell), the higher the ionization energy. Thus, bromine (Br) and tin (Sn) have high ionization energies because they have more number of electrons in there outermost shell.
<u>Berylium (Be) and strontium (Sr) are both in the group 2 of the periodic table because they both have 2 electrons in there outermost shell. Ionization energy decreases down a group. This is because the farther an electron is from the nucleus, the weaker the force of attraction between the nucleus and the electron. Thus, strontium (Sr) would have a lesser ionization energy between the two and would indeed have the least ionization among the options provided</u>. Hence, the correct option is B
Answer: <em>Running water, even at a trickle, helps prevent pipes from freezing. If you decide to use fuel-burning equipment, such as a kerosene heater, ensure it is vented to outside and kept clear of any vents. Keep garage doors closed if there are water supply lines in the garage.</em>
Explanation: