Answer:
h = 10sin(π15t)+35
Step-by-step explanation:
The height of the blade as a function f time can be written in the following way:
h = Asin(xt) + B, where:
B represets the initial height of the blade above the ground.
A represents the amplitud of length of the blade.
x represents the period.
The initial height is 35 ft, therefore, B = 35ft.
The amplotud of lenth of the blade is 10ft, therefore A = 10.
The period is two rotations every minute, therefore the period should be 60/4 = 15. Then x = 15π
Finally the equation that can be used to model h is:
h = 10sin(π15t)+35
Answer:
a) No
b) 42%
c) 8%
d) X 0 1 2
P(X) 42% 50% 8%
e) 0.62
Step-by-step explanation:
a) No, the two games are not independent because the the probability you win the second game is dependent on the probability that you win or lose the second game.
b) P(lose first game) = 1 - P(win first game) = 1 - 0.4 = 0.6
P(lose second game) = 1 - P(win second game) = 1 - 0.3 = 0.7
P(lose both games) = P(lose first game) × P(lose second game) = 0.6 × 0.7 = 0.42 = 42%
c) P(win first game) = 0.4
P(win second game) = 0.2
P(win both games) = P(win first game) × P(win second game) = 0.4 × 0.2 = 0.08 = 8%
d) X 0 1 2
P(X) 42% 50% 8%
P(X = 0) = P(lose both games) = P(lose first game) × P(lose second game) = 0.6 × 0.7 = 0.42 = 42%
P(X = 1) = [ P(lose first game) × P(win second game)] + [ P(win first game) × P(lose second game)] = ( 0.6 × 0.3) + (0.4 × 0.8) = 0.18 + 0.32 = 0.5 = 50%
e) The expected value
f) Variance
Standard deviation
It would be 384.58, or 384.57909
392,200 because the 5 makes the 1 round up to 2 so it’s 392,200