Answer:
2.67 mL
Explanation:
The following data were obtained from the question:
Mass of tetracycline = 2 mg
Density of tetracycline = 0.75 mg/mL
Volume of tetracycline =?
We can obtain the volume of the tetracycline that should be given to the patient by applying the following equation:
Density = mass /volume
0.75 = 2 / volume
Cross multiply
0.75 × Volume = 2
Divide both side by 0.75
Volume = 2/0.75
Volume = 2.67 mL
Therefore, the volume of the tetracycline that should be given to the patient is 2.67 mL
Answer
A. It changes the rate, R
Explanation
When we change the concentration of the reactants in a chemical reaction, it affects the rate of reaction that happens in the process. Typically, the rate of reaction will decrease with time if the concentration of the reactants decreases because the reactants will be converted to products. Similarly, the rate of reaction will increase when the concentration of reactants are increased.
Explanation:
According to Bohr's postulates, the electron in the present in the lower energy level can absorb energy and exits to higher energy level. Also, when this electron returns back to its orbit, it emits some energy.
Since the hydrogen consists of 1 electron and 1 proton. The lowest energy configuration of the hydrogen is when n =1 or, when the electron is present in the K-shell or the ground state.
The possible transition for the electron given in the question is :
n = 2, 3 and 4
The schematic diagram of the hydrogen atom consisting of these four quantum levels in which the electron can jump (Absorption) and comeback to from these energy levels (emission) .
The answer is A. the solar ultraviolet ray breaks the molecule apart