Answer:
12 kgm²
Explanation:
here angular acceleration = 10rad/sec²
torque= 120Nm
moment of inertia=?
we know,
torque= angular acceleration× moment of Inertia
or, moment of inertia = torque/angular acceleration
= 120/10
= 12kgm²
Explanation:
The attached figure shows data for the cart speed, distance and time.
For low fan speed,
Distance, d = 500 cm
Time, t = 7.4 s
Average velocity,
Acceleration,
For medium fan speed,
Distance, d = 500 cm
Time, t = 6.4 s
Average velocity,
Acceleration,
For high fan speed,
Distance, d = 500 cm
Time, t = 5.6 s
Average velocity,
Acceleration,
Hence, this is the required solution.
Answer:
option a.
Explanation:
We can think of an atom as a nucleus (where the protons and neutrons are) and some electrons orbiting it.
We also know that the mass of an electron is a lot smaller than the mass of a proton or the mass of an electron.
So, if all the protons and electrons of an atom are in the nucleus, we know that most of the mass of an atom is in the nucleus of that atom.
Then we define the mass number, which is the total number of protons and neutrons in an atom. Such that the mass of a proton (or a neutron) is almost equal to 1u
Then if we define A as the total number of protons and neutrons, and each one of these weights about 1u
(where u = atomic mass unit)
Then the weight of the nucleus is about A times 1u, or:
A*1u = A atomic mass units.
Then the correct option is:
The mass of the nucleus is approximately EQUAL to the mass number multiplied by __1__ Atomic Mass unit.
option a.
Answer:
Yes
Explanation:
It is possible for sedimentary rocks to be converted to igneous rocks. Under conditions of high temperature and pressure, sedimentary rocks can be broken down into igneous rock by melting this rock type.
When the rock is broken down, it forms melt which when cooled and solidifies will form igneous rocks.
Sedimentary rocks are formed from the breaking down of pre-existing rocks through the action of weathering, erosion and sediment transportation. Within a basin, the sediments are compacted and lithified.
When this is subjected to intense pressure and temperature, the rock hardens and might further break down to melt.