Answer:
The approximate change in entropy is -14.72 J/K.
Explanation:
Given that,
Temperature = 22°C
Internal energy
Final temperature = 16°C
We need to calculate the approximate change in entropy
Using formula of the entropy
Where, = internal energy
T = average temperature
Put the value in to the formula
Hence, The approximate change in entropy is -14.72 J/K.
Answer:
Answer:
the amount of energy flowing is 1.008x10⁹J
Explanation:
To calculate how much heat flows, the expression is the following:
Where
K=thermal conductivity=0.81W/m°C
A=area=6.2*12=74.4m²
ΔT=30-8=22°C
L=thickness=8cm=0.08m
t=time=16.9h=60840s
Replacing:
Explanation:
Answer:
v = 1.32 10² m
Explanation:
In this case we are going to use the universal gravitation equation and Newton's second law
F = G m M / r²
F = m a
In this case the acceleration is centripetal
a = v² / r
The force is given by the gravitational force
G m M / r² = m v² / r
G M/r = v²
Let's calculate the mass of the planet
M = v² r / G
M = (1.75 10⁴)² 5.00 10⁶ / 6.67 10⁻¹¹
M = 2.30 10²¹ kg
With this die we clear the equation to find the orbit of the second satellite
v = √ G M / r
v = √ (6.67 10⁻¹¹ 2.30 10²¹ / 8.75 10⁶)
v = 1.32 10² m
number 2 because the curve demstrates the crest GOOD LUCK i hope i got you the correct answer if not sorry
Answer:
EXplained
Explanation:
from conservation of energy
change in potential energy = gain in kinetic energy
so as all he balls are throws from the same height thus the change in potential energy is the same for all the balls thus the gain in kinetic energy is the same for all the balls and as they have the same initial velocity thus the final velocity is the same for all the balls.