Answer:
Explanation:
From the statement of the problem,
B₂S₃ + H₂O → H₃BO₃ + H₂S
B₂S₃ + H₂O → H₃BO₃ + H₂S
We that the above expression does not conform with the law of conservation of mass:
To obey the law, we need to derive a balanced reaction equation:
Let us use the mathematical method to obtain a balanced equation.
let the balanced equation be:
aB₂S₃ + bH₂O → cH₃BO₃ + dH₂S
where a, b, c and d will make the equation balanced.
Conservating B: 2a = c
S: 3a = d
H: 2b = 3c + 2d
O: b = 3c
if a = 1,
c = 2,
b = 6,
2d = 2(6) - 3(2) = 6, d = 3
Now we can input this into our equation:
B₂S₃ + 6H₂O → 2H₃BO₃ + 3H₂S
B₂S₃ + 6H₂O → 2H₃BO₃ + 3H₂S
Answer:
covalent bonds............
Answer:
True
Explanation:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
Hope it helps
Answer:
54g of water
Explanation:
Based on the reaction, 1 mole of methane produce 2 moles of water.
To solve this question we must find the molar mass of methane in order to find the moles of methane added. With the moles of methane and the chemical equation we can find the moles of water produced and its mass:
<em>Molar mass CH₄:</em>
1C = 12g/mol*1
4H = 1g/mol*4
12g/mol + 4g/mol = 16g/mol
<em>Moles methane: </em>
24g CH₄ * (1mol / 16g) = 1.5 moles methane
<em>Moles water:</em>
1.5moles CH₄ * (2mol H₂O / 1mol CH₄) = 3.0moles H₂O
<em>Molar mass water:</em>
2H = 1g/mol*2
1O = 16g/mol*1
2g/mol + 16g/mol = 18g/mol
<em>Mass water:</em>
3.0moles H₂O * (18g / mol) =
<h3>54g of water</h3>