I suppose you just have to simplify this expression.
(2ˣ⁺² - 2ˣ⁺³) / (2ˣ⁺¹ - 2ˣ⁺²)
Divide through every term by the lowest power of 2, which would be <em>x</em> + 1 :
… = (2ˣ⁺²/2ˣ⁺¹ - 2ˣ⁺³/2ˣ⁺¹) / (2ˣ⁺¹/2ˣ⁺¹ - 2ˣ⁺²/2ˣ⁺¹)
Recall that <em>n</em>ª / <em>n</em>ᵇ = <em>n</em>ª⁻ᵇ, so that we have
… = (2⁽ˣ⁺²⁾ ⁻ ⁽ˣ⁺¹⁾ - 2⁽ˣ⁺³⁾ ⁻ ⁽ˣ⁺¹⁾) / (2⁽ˣ⁺¹⁾ ⁻ ⁽ˣ⁺¹⁾ - 2⁽ˣ⁺²⁾ ⁻ ⁽ˣ⁺¹⁾)
… = (2¹ - 2²) / (2⁰ - 2¹)
… = (2 - 4) / (1 - 2)
… = (-2) / (-1)
… = 2
Another way to get the same result: rewrite every term as a multiple of <em>y</em> = 2ˣ :
… = (2²×2ˣ - 2³×2ˣ) / (2×2ˣ - 2²×2ˣ)
… = (4×2ˣ - 8×2ˣ) / (2×2ˣ - 4×2ˣ)
… = (4<em>y</em> - 8<em>y</em>) / (2<em>y</em> - 4<em>y</em>)
… = (-4<em>y</em>) / (-2<em>y</em>)
… = 2
a) 3(-2) + 4(3) = -6 + 12 = 6
b) 2(-2) -3(3) +5 = -4 -9 + 5 = -8
c) 4(-2) -(3) = -8 -3 = -11
d) -(-2) -2(3) = 4 -6 = -2
e) (1/2)(-2) +(3) = -1 +3 = 2
f) (2/3)(3) -(1/2)(-2) = 2 + 1 = 3