Maximum number of covalent bonds that an oxygen atom can make with hydrogen is 2.
- the ground state electronic configuration of oxygen is 2s² 2p⁴ that means it has 6 electrons in its valence shell and require two electrons are required to complete its octate.
- Two bonds are created when an electron donor atom shares the two needed electrons with oxygen. The ability of two oxygen atoms to share valence electrons results in the creation of a double bond between the two atoms.
- There are no longer any empty orbitals in the octet of oxygen after it is complete. As a result, it is unable to accept more electrons or create more bonds.
Therefore, Oxygen can only generate two bonds because it needs two additional electrons to complete its octet, after which it will run out of empty orbitals in which to receive additional electrons and create additional bonds.
learn more about octate here:
https://brainly.in/question/24161245
#SPJ4
6 - one sodium atom, 1 hydrogen atom, 1 carbon atom, and 3 oxygen atoms.
Answer:
64J of energy must have been released.
Explanation:
Step 1: Data given
One reactant contains 346 J of chemical energy, the other reactant contains 153 J of chemical energy.
The product contains 435 J of chemical energy.
Step 2:
Since the energy is conserved
Sum of energy of Reactants = Energy of Products
Sum of energy of Reactants = 346 J + 153 J = 499 J
The energy of the product = 435 J
435 < 499
This means energy must have been lost as heat.
Step 3: Calculate heat released
499 J - 435 J = 64 J
64J of energy must have been released.
Answer:
Explanation:
The molecular mass of a monomer unit is:
C₂H₃Cl = 2×12.01 + 3×1.008 + 35.45 = 24.02 + 3.024 + 35.45 = 62.494 u
For 1565 units,
Given:
Concentration of Fluoride ions = 0.100 M
Concentration of Hydrogen Fluoride = 0.126 M
Asked: Concentration of fluoride ions after the addition of 5ml of 0.0100 M HCl to 25 mL of the solution
Assume: 50:50 ratio of fluoride ions and HF
12.5ml*0.1mol/L *1L/1000mL + 12.5*0.126mol/L * 1L/1000mL = 2.825x10^-3 moles F-
5ml * 0.01 mol/L *1L/1000mL = 5x10^-5 moles
Assume: Volume additive
Final concentration = 2.825x10^-3 + 5x10^-5 moles/ 30 ml * 1000ml/L =0.0958 M
<span />