This phrase can be written as 20 + f.
So, 20 + f is the answer.
Answer:
Step-by-step explanation:
Since the number of pages that this new toner can print is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = the number of pages.
µ = mean
σ = standard deviation
From the information given,
µ = 2300 pages
σ = 150 pages
1)
the probability that this toner can print more than 2100 pages is expressed as
P(x > 2100) = 1 - P(x ≤ 2100)
For x = 2100,
z = (2100 - 2300)/150 = - 1.33
Looking at the normal distribution table, the probability corresponding to the z score is 0.092
P(x > 2100) = 1 - 0.092 = 0.908
2) P(x < 2200)
z = (x - µ)/σ/√n
n = 10
z = (2200 - 2300)/150/√10
z = - 100/47.43 = - 2.12
Looking at the normal distribution table, the probability corresponding to the z score is 0.017
P(x < 2200) = 0.017
3) for underperforming toners, the z score corresponding to the probability value of 3%(0.03) is
- 1.88
Therefore,
- 1.88 = (x - 2300)/150
150 × - 1.88 = x - 2300
- 288 = x - 2300
x = - 288 + 2300
x = 2018
The threshold should be
x < 2018 pages
Her work is incorrect because she accidentally changed -14 to -7 in the second step.
Working it out from the top we get
(x-14)+11=x-(x-4)
x-14+11=x-x+4
x-3=0+4
Final answer:
x=7
Hope I helped :)
Answer:
Option A) The function is even because it is symmetric with respect to the y-axis.
Step-by-step explanation:
We are given a graph of the function.
We can see that the given function is symmetric around the y axis as the y axis acts as a mirror.
Symmetry around y-axis
- The y-axis acts as the line of symmetry for the given graph.
- A graph is said to be symmetric about the y axis if (a,b) is on the graph, then we can find the point (-a,b) on the graph as well.
Even Function:
- A function is said to be even if
- A function f is even if the graph of f is symmetric with respect to the y-axis
Odd function:
- A function is said to be odd if
- A function f is even if the graph of f is symmetric with respect to the x-axis.
Thus, we can write that the given function is an even function as the the graph is symmetric to the y-axis.
Option A) The function is even because it is symmetric with respect to the y-axis.